A general tree implementation?

Python Programming

Question or problem about Python programming:

I want to build a general tree whose root node contains ‘n’ children, and those children may contain other children…..

How to solve the problem:

Solution 1:

A tree in Python is quite simple. Make a class that has data and a list of children. Each child is an instance of the same class. This is a general n-nary tree.

class Node(object):
    def __init__(self, data):
        self.data = data
        self.children = []

    def add_child(self, obj):
        self.children.append(obj)

Then interact:

>>> n = Node(5)
>>> p = Node(6)
>>> q = Node(7)
>>> n.add_child(p)
>>> n.add_child(q)
>>> n.children
[<__main__.Node object at 0x02877FF0>, <__main__.Node object at 0x02877F90>]
>>> for c in n.children:
...   print c.data
... 
6
7
>>> 

This is a very basic skeleton, not abstracted or anything. The actual code will depend on your specific needs – I’m just trying to show that this is very simple in Python.

Solution 2:

I’ve published a Python [3] tree implementation on my site: http://www.quesucede.com/page/show/id/python_3_tree_implementation.

Hope it is of use,

Ok, here’s the code:

import uuid

def sanitize_id(id):
    return id.strip().replace(" ", "")

(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)

class Node:

    def __init__(self, name, identifier=None, expanded=True):
        self.__identifier = (str(uuid.uuid1()) if identifier is None else
                sanitize_id(str(identifier)))
        self.name = name
        self.expanded = expanded
        self.__bpointer = None
        self.__fpointer = []

    @property
    def identifier(self):
        return self.__identifier

    @property
    def bpointer(self):
        return self.__bpointer

    @bpointer.setter
    def bpointer(self, value):
        if value is not None:
            self.__bpointer = sanitize_id(value)

    @property
    def fpointer(self):
        return self.__fpointer

    def update_fpointer(self, identifier, mode=_ADD):
        if mode is _ADD:
            self.__fpointer.append(sanitize_id(identifier))
        elif mode is _DELETE:
            self.__fpointer.remove(sanitize_id(identifier))
        elif mode is _INSERT:
            self.__fpointer = [sanitize_id(identifier)]

class Tree:

    def __init__(self):
        self.nodes = []

    def get_index(self, position):
        for index, node in enumerate(self.nodes):
            if node.identifier == position:
                break
        return index

    def create_node(self, name, identifier=None, parent=None):

        node = Node(name, identifier)
        self.nodes.append(node)
        self.__update_fpointer(parent, node.identifier, _ADD)
        node.bpointer = parent
        return node

    def show(self, position, level=_ROOT):
        queue = self[position].fpointer
        if level == _ROOT:
            print("{0} [{1}]".format(self[position].name, self[position].identifier))
        else:
            print("\t"*level, "{0} [{1}]".format(self[position].name, self[position].identifier))
        if self[position].expanded:
            level += 1
            for element in queue:
                self.show(element, level)  # recursive call

    def expand_tree(self, position, mode=_DEPTH):
        # Python generator. Loosly based on an algorithm from 'Essential LISP' by
        # John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
        yield position
        queue = self[position].fpointer
        while queue:
            yield queue[0]
            expansion = self[queue[0]].fpointer
            if mode is _DEPTH:
                queue = expansion + queue[1:]  # depth-first
            elif mode is _WIDTH:
                queue = queue[1:] + expansion  # width-first

    def is_branch(self, position):
        return self[position].fpointer

    def __update_fpointer(self, position, identifier, mode):
        if position is None:
            return
        else:
            self[position].update_fpointer(identifier, mode)

    def __update_bpointer(self, position, identifier):
        self[position].bpointer = identifier

    def __getitem__(self, key):
        return self.nodes[self.get_index(key)]

    def __setitem__(self, key, item):
        self.nodes[self.get_index(key)] = item

    def __len__(self):
        return len(self.nodes)

    def __contains__(self, identifier):
        return [node.identifier for node in self.nodes if node.identifier is identifier]

if __name__ == "__main__":

    tree = Tree()
    tree.create_node("Harry", "harry")  # root node
    tree.create_node("Jane", "jane", parent = "harry")
    tree.create_node("Bill", "bill", parent = "harry")
    tree.create_node("Joe", "joe", parent = "jane")
    tree.create_node("Diane", "diane", parent = "jane")
    tree.create_node("George", "george", parent = "diane")
    tree.create_node("Mary", "mary", parent = "diane")
    tree.create_node("Jill", "jill", parent = "george")
    tree.create_node("Carol", "carol", parent = "jill")
    tree.create_node("Grace", "grace", parent = "bill")
    tree.create_node("Mark", "mark", parent = "jane")

    print("="*80)
    tree.show("harry")
    print("="*80)
    for node in tree.expand_tree("harry", mode=_WIDTH):
        print(node)
    print("="*80)

Solution 3:

anytree

I recommend https://pypi.python.org/pypi/anytree

Example
from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)

print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')

for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Udo
├── Marc
│   └── Lian
└── Dan
    ├── Jet
    ├── Jan
    └── Joe

print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
Features

anytree has also a powerful API with:

  • simple tree creation
  • simple tree modification
  • pre-order tree iteration
  • post-order tree iteration
  • resolve relative and absolute node paths
  • walking from one node to an other.
  • tree rendering (see example above)
  • node attach/detach hookups

Solution 4:

node = { 'parent':0, 'left':0, 'right':0 }
import copy
root = copy.deepcopy(node)
root['parent'] = -1
left = copy

just to show another thought on implementation if you stick to the “OOP”

class Node:
    def __init__(self,data):
        self.data = data
        self.child = {}
    def append(self, title, child):
        self.child[title] = child

CEO = Node( ('ceo', 1000) )
CTO = ('cto',100)
CFO = ('cfo', 10)
CEO.append('left child', CTO)
CEO.append('right child', CFO)

print CEO.data
print ' ', CEO.child['left child']
print ' ', CEO.child['right child']

Hope this helps!